Recent Machine Learning Papers
SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
Shanghai AI Lab, :, Yicheng Bao, Guanxu Chen, Mingkang Chen, Yunhao Chen, Chiyu Chen, Lingjie Chen, Sirui Chen, Xinquan Chen, Jie Cheng, Yu Cheng, Dengke Deng, Yizhuo Ding, Dan Ding, Xiaoshan Ding, Yi Ding, Zhichen Dong, Lingxiao Du, Yuyu Fan, Xinshun Feng, Yanwei Fu, Yuxuan Gao, Ruijun Ge, Tianle Gu, Lujun Gui, Jiaxuan Guo, Qianxi He, Yuenan Hou, Xuhao Hu, Hong Huang, Kaichen Huang, Shiyang Huang, Yuxian Jiang, Shanzhe Lei, Jie Li, Lijun Li, Hao Li, Juncheng Li, Xiangtian Li, Yafu Li, Lingyu Li, Xueyan Li, Haotian Liang, Dongrui Liu, Qihua Liu, Zhixuan Liu, Bangwei Liu, Huacan Liu, Yuexiao Liu, Zongkai Liu, Chaochao Lu, Yudong Lu, Xiaoya Lu, Zhenghao Lu, Qitan Lv, Caoyuan Ma, Jiachen Ma, Xiaoya Ma, Zhongtian Ma, Lingyu Meng, Ziqi Miao, Yazhe Niu, Yuezhang Peng, Yuan Pu, Han Qi, Chen Qian, Xingge Qiao, Jingjing Qu, Jiashu Qu, Wanying Qu, Wenwen Qu, Xiaoye Qu, Qihan Ren, Qingnan Ren, Qingyu Ren, Jing Shao, Wenqi Shao, Shuai Shao, Dongxing Shi, Xin Song, Xinhao Song, Yan Teng, Xuan Tong, Yingchun Wang, Xuhong Wang, Shujie Wang, Xin Wang, Yige Wang, Yixu Wang, Yuanfu Wang, Futing Wang, Ruofan Wang, Wenjie Wang, Yajie Wang, Muhao Wei, Xiaoyu Wen, Fenghua Weng, Yuqi Wu, Yingtong Xiong, Xingcheng Xu, Chao Yang, Yue Yang, Yang Yao, Yulei Ye, Zhenyun Yin, Yi Yu, Bo Zhang, Qiaosheng Zhang, Jinxuan Zhang, Yexin Zhang, Yinqiang Zheng, Hefeng Zhou, Zhanhui Zhou, Pengyu Zhu, Qingzi Zhu, Yubo Zhu, Bowen Zhou
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a su...
SynC: Synthetic Image Caption Dataset Refinement with One-to-many Mapping for Zero-shot Image Captioning
Si-Woo Kim, MinJu Jeon, Ye-Chan Kim, Soeun Lee, Taewhan Kim, Dong-Jin Kim
Zero-shot Image Captioning (ZIC) increasingly utilizes synthetic datasets generated by text-to-image (T2I) models to mitigate the need for costly manual annotation. However, these T2I models often produce images that exhibit semantic misalignments with their corresponding input captions (e.g., missi...
Elucidating the Design Space of Arbitrary-Noise-Based Diffusion Models
Xingyu Qiu, Mengying Yang, Xinghua Ma, Dong Liang, Yuzhen Li, Fanding Li, Gongning Luo, Wei Wang, Kuanquan Wang, Shuo Li
EDM elucidates the unified design space of diffusion models, yet its fixed noise patterns restricted to pure Gaussian noise, limit advancements in image restoration. Our study indicates that forcibly injecting Gaussian noise corrupts the degraded images, overextends the image transformation distance...
DRWKV: Focusing on Object Edges for Low-Light Image Enhancement
Xuecheng Bai, Yuxiang Wang, Boyu Hu, Qinyuan Jie, Chuanzhi Xu, Hongru Xiao, Kechen Li, Vera Chung
Low-light image enhancement remains a challenging task, particularly in preserving object edge continuity and fine structural details under extreme illumination degradation. In this paper, we propose a novel model, DRWKV (Detailed Receptance Weighted Key Value), which integrates our proposed Global ...