Recent Machine Learning Papers
SafeWork-R1: Coevolving Safety and Intelligence under the AI-45$^{\circ}$ Law
Shanghai AI Lab, :, Yicheng Bao, Guanxu Chen, Mingkang Chen, Yunhao Chen, Chiyu Chen, Lingjie Chen, Sirui Chen, Xinquan Chen, Jie Cheng, Yu Cheng, Dengke Deng, Yizhuo Ding, Dan Ding, Xiaoshan Ding, Yi Ding, Zhichen Dong, Lingxiao Du, Yuyu Fan, Xinshun Feng, Yanwei Fu, Yuxuan Gao, Ruijun Ge, Tianle Gu, Lujun Gui, Jiaxuan Guo, Qianxi He, Yuenan Hou, Xuhao Hu, Hong Huang, Kaichen Huang, Shiyang Huang, Yuxian Jiang, Shanzhe Lei, Jie Li, Lijun Li, Hao Li, Juncheng Li, Xiangtian Li, Yafu Li, Lingyu Li, Xueyan Li, Haotian Liang, Dongrui Liu, Qihua Liu, Zhixuan Liu, Bangwei Liu, Huacan Liu, Yuexiao Liu, Zongkai Liu, Chaochao Lu, Yudong Lu, Xiaoya Lu, Zhenghao Lu, Qitan Lv, Caoyuan Ma, Jiachen Ma, Xiaoya Ma, Zhongtian Ma, Lingyu Meng, Ziqi Miao, Yazhe Niu, Yuezhang Peng, Yuan Pu, Han Qi, Chen Qian, Xingge Qiao, Jingjing Qu, Jiashu Qu, Wanying Qu, Wenwen Qu, Xiaoye Qu, Qihan Ren, Qingnan Ren, Qingyu Ren, Jing Shao, Wenqi Shao, Shuai Shao, Dongxing Shi, Xin Song, Xinhao Song, Yan Teng, Xuan Tong, Yingchun Wang, Xuhong Wang, Shujie Wang, Xin Wang, Yige Wang, Yixu Wang, Yuanfu Wang, Futing Wang, Ruofan Wang, Wenjie Wang, Yajie Wang, Muhao Wei, Xiaoyu Wen, Fenghua Weng, Yuqi Wu, Yingtong Xiong, Xingcheng Xu, Chao Yang, Yue Yang, Yang Yao, Yulei Ye, Zhenyun Yin, Yi Yu, Bo Zhang, Qiaosheng Zhang, Jinxuan Zhang, Yexin Zhang, Yinqiang Zheng, Hefeng Zhou, Zhanhui Zhou, Pengyu Zhu, Qingzi Zhu, Yubo Zhu, Bowen Zhou
We introduce SafeWork-R1, a cutting-edge multimodal reasoning model that demonstrates the coevolution of capabilities and safety. It is developed by our proposed SafeLadder framework, which incorporates large-scale, progressive, safety-oriented reinforcement learning post-training, supported by a su...
Locate-and-Focus: Enhancing Terminology Translation in Speech Language Models
Suhang Wu, Jialong Tang, Chengyi Yang, Pei Zhang, Baosong Yang, Junhui Li, Junfeng Yao, Min Zhang, Jinsong Su
Direct speech translation (ST) has garnered increasing attention nowadays, yet the accurate translation of terminology within utterances remains a great challenge. In this regard, current studies mainly concentrate on leveraging various translation knowledge into ST models. However, these methods of...
TDR: Task-Decoupled Retrieval with Fine-Grained LLM Feedback for In-Context Learning
Yifu Chen, Bingchen Huang, Zhiling Wang, Yuanchao Du, Junfeng Luo, Lei Shen, Zhineng chen
In-context learning (ICL) has become a classic approach for enabling LLMs to handle various tasks based on a few input-output examples. The effectiveness of ICL heavily relies on the quality of these examples, and previous works which focused on enhancing example retrieval capabilities have achieved...
AQuilt: Weaving Logic and Self-Inspection into Low-Cost, High-Relevance Data Synthesis for Specialist LLMs
Xiaopeng Ke, Hexuan Deng, Xuebo Liu, Jun Rao, Zhenxi Song, Jun Yu, Min Zhang
Despite the impressive performance of large language models (LLMs) in general domains, they often underperform in specialized domains. Existing approaches typically rely on data synthesis methods and yield promising results by using unlabeled data to capture domain-specific features. However, these ...
SynC: Synthetic Image Caption Dataset Refinement with One-to-many Mapping for Zero-shot Image Captioning
Si-Woo Kim, MinJu Jeon, Ye-Chan Kim, Soeun Lee, Taewhan Kim, Dong-Jin Kim
Zero-shot Image Captioning (ZIC) increasingly utilizes synthetic datasets generated by text-to-image (T2I) models to mitigate the need for costly manual annotation. However, these T2I models often produce images that exhibit semantic misalignments with their corresponding input captions (e.g., missi...
Wide-In, Narrow-Out: Revokable Decoding for Efficient and Effective DLLMs
Feng Hong, Geng Yu, Yushi Ye, Haicheng Huang, Huangjie Zheng, Ya Zhang, Yanfeng Wang, Jiangchao Yao
Diffusion Large Language Models (DLLMs) have emerged as a compelling alternative to Autoregressive models, designed for fast parallel generation. However, existing DLLMs are plagued by a severe quality-speed trade-off, where faster parallel decoding leads to significant performance degradation. We a...