Recent Machine Learning Papers

Advanced Search
2025-09-18

Sample Efficient Experience Replay in Non-stationary Environments

Tianyang Duan, Zongyuan Zhang, Songxiao Guo, Yuanye Zhao, Zheng Lin, Zihan Fang, Yi Liu, Dianxin Luan, Dong Huang, Heming Cui, Yong Cui

Reinforcement learning (RL) in non-stationary environments is challenging, as changing dynamics and rewards quickly make past experiences outdated. Traditional experience replay (ER) methods, especially those using TD-error prioritization, struggle to distinguish between changes caused by the agent'...

2025-09-18

Internalizing Self-Consistency in Language Models: Multi-Agent Consensus Alignment

Ankur Samanta, Akshayaa Magesh, Youliang Yu, Runzhe Wu, Ayush Jain, Daniel Jiang, Boris Vidolov, Paul Sajda, Yonathan Efroni, Kaveh Hassani

Language Models (LMs) are inconsistent reasoners, often generating contradictory responses to identical prompts. While inference-time methods can mitigate these inconsistencies, they fail to address the core problem: LMs struggle to reliably select reasoning pathways leading to consistent outcomes u...

2025-09-18

Vulnerable Agent Identification in Large-Scale Multi-Agent Reinforcement Learning

Simin Li, Zheng Yuwei, Zihao Mao, Linhao Wang, Ruixiao Xu, Chengdong Ma, Xin Yu, Yuqing Ma, Qi Dou, Xin Wang, Jie Luo, Bo An, Yaodong Yang, Weifeng Lv, Xianglong Liu

Partial agent failure becomes inevitable when systems scale up, making it crucial to identify the subset of agents whose compromise would most severely degrade overall performance. In this paper, we study this Vulnerable Agent Identification (VAI) problem in large-scale multi-agent reinforcement lea...

2025-09-18

FlowRL: Matching Reward Distributions for LLM Reasoning

Xuekai Zhu, Daixuan Cheng, Dinghuai Zhang, Hengli Li, Kaiyan Zhang, Che Jiang, Youbang Sun, Ermo Hua, Yuxin Zuo, Xingtai Lv, Qizheng Zhang, Lin Chen, Fanghao Shao, Bo Xue, Yunchong Song, Zhenjie Yang, Ganqu Cui, Ning Ding, Jianfeng Gao, Xiaodong Liu, Bowen Zhou, Hongyuan Mei, Zhouhan Lin

We propose FlowRL: matching the full reward distribution via flow balancing instead of maximizing rewards in large language model (LLM) reinforcement learning (RL). Recent advanced reasoning models adopt reward-maximizing methods (\eg, PPO and GRPO), which tend to over-optimize dominant reward signa...